

UDT Model S471 High Performance Handheld Optical Meter

The model S471 High Performance Handheld Optical Meter is ideal for photometric, radiometric, laser power, and fiber optic measurements. Designed to be used in a laboratory setting or field environment, the microprocessor controlled architecture features direct analog display, serial RS-232 output and analog voltage output.

Our wide range of optical meters, photometric and radiometric sensors is complemented by ISO/IEC 17025 accreditation by NVLAP (NVLAP lab code 200823-0), resulting in unmatched performance and custom configuration as required.

Precision Solutions for Photometric, Radiometric & Laser Power Measurement

- Wide dynamic range
- High accuracy measurements
- Programmable average readings in low-pass or boxcar average
- Sample speeds up to 53 Hz⁽¹⁾
- Optional USB to serial bridge converter
- · Long battery lifetime or use external power

Sensor Options (2)				
Photometric Sensors (3)	Silicon Detectors Options include: Standard Miniature, Low Profile, LED measurement sockets			
Radiometric Sensors	Silicon, Germanium or InGaAs Detectors Options include: UV Enhanced, Miniature, Low Profile, Flat Response, Blue Optimized			
LED Measurement Head	Meets CIE Publication 127 Conditions A & B High Precision and Quick-change mounts			
Integrating Spheres	50 mm diameter mini-spheres with 5 mm entrance port			

- (1) Maximum update speed achieved with display disabled and computer interface in use.
- (2) An extensive range of sensors and sensor configurations is available for measurement of power, lux, luminance as well as transimpedance amplifiers and integrating spheres.
- (3) The high accuracy of our photometric sensors begins with our world-class Photopic filters, featuring spectral matching to f_1 < 1%.

UDT Model S471 Handheld Optical Meter

General Specifications

Parameter	Values				
Electronic	7 Gains, auto/manual selection				
Electrical Accuracy	± 1.2% ± 2 counts				
Dynamic Range	9 ^{1/2} decades				
Bandwidth	7.5 Hz				
	Luminous Flux (lumens) or Radiant Flux (Watt)				
Measurement Modes	Illuminance (lux, foot-candle) or Irradiance (W/m²)				
(sensor dependent)	Luminous Intensity (candela) or Radiant Intensity (W/sr)				
	Luminance (cd/m² , foot-Lambert) or Radiance (W/m² ·sr)				
Display Information	4.5 digits 2Hz update rate Modes include Linear, Log and Analog (bar graph)				
Computer Interfaces	RS-232 or USB with use of serial bridge adaptor (not included)				
Sample Rates	18.9 msec Update rate via RS-232 2 Hz with display enabled, 53 Hz with display disabled				
Averaging Modes	Low-pass or Boxcar, programmable				
Analog Output Scale	± 4 VDC				
Communication Rate	9600 Baud				
Operational Battery Life	16 Hours with backlight off, 12 Hours with backlight on				
Operating Temperature	10 to 60° C				
Storage Temperature	-20 to 35° C for up to 1 year				
External Power Source	12 VDC at 3.3 A or 100-240 VAC 50/60 Hz with supplied power adaptor, 40 W max with 1 meter cable				
Internal Power Source	Rechargeable integral batteries 5 NiMH AA, 1800 mAHr batteries				
Calibration Capacity	9 Continuous or 50 single-point				
Calibration Traceability	Traceable to NIST with optional ISO/IEC 17025 accredited				
Relative Humidity	Up to 99% (non-condensing)				
Dimensions	234 mm (9.25 in) L x 114 mm (4.5 in) W x 36 mm (1.4 in) H 590g (1.3 lb)				
Regulatory Compliance	TUV, UL, CSA, CE				

Most Popular Sensor Options (purchased separately)

Sensor	Material	Default Cal Units	Dynamic Range	λ Range (nm)	Sensor Area	Notes
221	Si	Watts	5.0 x 10 ⁻¹¹ to 2.4 x 10 ⁻³ W	350 – 1100	1 cm ²	
247	Si	Watts	1.3 x 10 ⁻¹⁰ to 6.4 x 10 ⁻³ W	350 – 1100	1 cm ²	Flat Response
261	Ge	Watts	5.0 x 10 ⁻¹⁰ to 6.0 x 10 ⁻³ W	800 - 1750	0.5 cm ²	
211	Si	Lux and fc	1 x 10 ⁻² to 5 x 10 ⁵ lux	400 – 700	1 cm ²	Photometric Response
265	Si	Candela/m² and fL	1.0 x 10 ⁻³ to 1.0 x 10 ⁵ cd/m ²	400 – 700	0.34 cm ²	High accuracy Photometric filter (f'1 < 3%); 13° fixed field-of-view; standard light shield
2153V-12.5	Si	Candela/m² and fL	1.2 x 10 ⁻² to 1.0 x 10 ⁶ cd/m ²	400 - 700	1 cm ²	High accuracy Photometric filter (f'1 < 3%); 12.5° fixed field-of-view
268UVA	Si - UV	Watts/cm ² @ 365nm	5.0 x 10 ⁻¹⁰ to 1.0 x 10 ⁻¹ W	320 - 400	1 cm ²	365nm Bandpass Filter; opal glass diffuser
268UVC	Si - UV	Watts/cm ² @ 254nm	5.0 x 10 ⁻⁸ to 5.0 x 10 ⁻¹ W	200 - 280	1 cm ²	254nm Bandpass Filter w/ PTFE diffuser
S2575	Si	Watts	3.0 x 10 ⁻⁸ to 9.5 x 10 ⁻¹ W	400 – 1100	0.34 cm ²	260 sensor; 50 mm sphere and 5mm Ø entrance aperture
S2575GE	Ge	Watts	3.0 x 10 ⁻⁹ to 1.6 W	800 - 1750	0.5 cm ²	261 sensor; 50 mm sphere and 5mm Ø entrance aperture
S2575R	Si	Watts	6.0 x 10 ⁻⁸ to 1.8 W	350 - 1100	0.34 cm ²	260 sensor; 50 mm sphere and 5mm Ø entrance aperture

⁽¹⁾ Typical rise time is 1μ sec for 0.34cm 2 sensors, 3μ sec for 1 cm 2 sensors, and 4μ sec for GE sensors.

 ϵ

Please consult our website for numerous other sensor options and the Configuration Guide.

Specifications are subject to change without notice.